If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+160x+256=0
a = -16; b = 160; c = +256;
Δ = b2-4ac
Δ = 1602-4·(-16)·256
Δ = 41984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41984}=\sqrt{1024*41}=\sqrt{1024}*\sqrt{41}=32\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-32\sqrt{41}}{2*-16}=\frac{-160-32\sqrt{41}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+32\sqrt{41}}{2*-16}=\frac{-160+32\sqrt{41}}{-32} $
| 200x-100x+47500=50500-150x | | 2^123456789+x=2 | | 1^123456789+x=2 | | 1^123456789+x=1 | | π+x=π | | 2x+4+3x+7=86 | | z+17=37 | | 3+5n=5n-10-7 | | 19z=190 | | z=13=-8 | | z-23=18 | | 78=(x^2-x)/2 | | n/3+7=2n3 | | x-69x-(x-5)=2x+4(x-20) | | -4(x-16)=-64 | | 17-y/3=8 | | 2(4n-1)=3(n+4) | | 124=4x+4 | | 4+5x-3=7+5 | | 5.8+x=716.2 | | 9x4+2x=22+2x | | x^-2=9/4 | | 10=2m-1-1 | | x^-2=2 | | -6=2k-4k | | 2x+1/2=5/6-3x | | 2+5x-8=x-6+4x | | x-4=12x=7-7x | | 6z+9=5z+3 | | 2/3x^2=73.5 | | 1/2+2x=5/6-3x | | 48/1=300/x |